skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Aram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, some of the most interesting discoveries in science and engineering emerged from interdisciplinary areas that defy the traditional classification. One recent and extensively studied example is the advent of optomechanics that explores the radiation pressure-induced nonlinearity in a solid micro-resonator. Instead of using a solid resonator, we studied a liquid droplet resonator in which optical pressure could actively interact with the fluid interface. The droplet resonator supported high-quality whispering gallery modes along its equatorial plane, which produced a radiation pressure that counterbalances the interfacial tension, resulting in a droplet with damped harmonic oscillation. A major goal of this study was to demonstrate that such a novel and all-liquid platform could lead to a single-photon-level nonlinearity at room temperature. If successful, such a highly nonlinear system may lead to new research paradigms in photonics, fluid mechanics, as well as quantum information science. 
    more » « less